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We examine the three-dimensional uniform hypersonic flow around the windward side of 
a thin wing whose surface shape depends on the time, at the angle of attack a = const. 
We shall consider the flow in the shock layer to be accompanied by physicochemical trans- 
formations and to be relaxational in nature. We assume that the shock layer thickness is 
proportional to a small parameter s equal to the characteristic value of the ratio between 
the densities at the bow shock front, and we use the method of a thin shock layer [i] for 
solution of the problem. 

i. We first analyze the case of the flow around a small span wing with the following 
characteristic dimensions: b=O(~e), c =O(e), L =i . Then by using the known asymptotic 
representations of the stream parameters in the form of series in e and the complete system 
of gas motion equations with physlcochemical transformations [2] we obtain 

dw/dt = O, dv/dt = --(l/po)Op/Oy; 

dpo/dt + po(av/ay + Ow/Oz) = 0 ;  

dq. /dt  = q.(po,  To, qm), m = l . . . .  , N ;  

dho/dt = 0, 'Po =to~(qm) /RTo ,  d/dt ='O/Ot + O/Ox + iVO/Oy-t-wO/0% 

(i.i) 

(/.2) 
(1.3) 

(1.4) 

where po, To, ho, qm are the fundamental values of the density, temperature, static enthalpy, 
and the relaxation parameters normalized by the corresponding value behind the compression 
shock, Po is the fundamental ("Newtonlan") value of the pressure, and the remianing notation 
is the same as in [2, 3]. 

The boundary conditions for the system of equations (1.1)-(1.4) have the following 
form on the shock front for y =~,z,t) 

w =  ~ , ,  v =  ~ t + ~ =  ~ = To = ho = qm = i ,  ( 1 . 5 )  - -  - - ~ z - - i ,  p =  2 ~ = q - 2 ~ t - - ~ - - t ,  Po 

and on the body surface for y = F(x, z, t) 

v = F x + F ~ + w F z .  ( 1 . 6 )  

There follows from (i.i) and (1.2) 

• (p;lw ) = 0. (1 .7 )  dt 

An a n a l o g o u s  r e s u l t  i s  o b t a i n e d  i n  [4] f o r  s t a t i o n a r y  p e r f e c t  gas  f l o w s .  

We go o v e r  to  new v a r i a b l e s  x ,  ~, 0, t ( f o r  which  d~/dt  = dO/dt =. O, 0(~, O)/O(y, z) --/= O) i n  
( 1 . 1 ) ,  ( 1 . 7 )  and ( 1 . 3 ) :  

w, + = o, + = o ,  

�9 zt + Zx = w, (q.)t + (qn)x = Q.(po, To, qm). 

Integrating we obtain 

w = ~ (% 0, % po lwv  = X (% 0, % �9 = x - -  t, 

= z ( ~ ,  o, ~) + x~o(r 0, ~), q .  = q . ( x  - -  zo),  

po = po(Z - -  xo), To = To(x - -  Xo), xo = ~(r  0,  ~). 
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Here ~, X, Z, ~ are arbitrary functions. Assuming without loss of generality, as in [5], that 
=~,Z =O, and going over to the variables x, ~, z, t, we find 

POX(*, z - -  , x ,  "0 = y , ,  Yt + y= + *Y, = v, 

v, + v~ + , v~  = -" p / % p , .  

(1.8) 

Integrating (1.8) and satisfying the boundary conditions (1.5) and (1.6), we obtain the 
general solution of the boundary value problem (1.1)-(1.6) in the form 

w =  , ,  y = F (x, z,  t) + ,I G ( ,~ ,  z - -  , . z ,  , )  tg -~ ( z  - -  zo) d %  

v = F t + Fx -5 SF: -5 (~ -- ~) p~G (p, z -- px, ~) pox (p, z -- pz, T) -5 

+ J" [ ( , _  + Gpa ] d,l ,  

p = 2r  -5 2(Dr - -  (l)~ - -  t - -  ]* (vt + v. + ,Vz) G (*1, z - -  r ~) dr  

H e r e  G-----X-~; ~ = x - - z 0 ,  w h e r e  f o r  y = F ( x ,  z ,  t )  on t h e  body  ~ iu r face  ~ =.!~, Pt -5 ~x -5 Pl~z 
= 0, and for Y = (P(z, z, t) on the shock surface 

(1.9) 

= ~, v = - - r  x = Zo(~, z - -  ~x,  ,), 

(the last equation follows from the solution of (i.I0) for y and the boundary conditions 
(1.5) for v and Po). 

The shape of the bow shock and the functions G(~, z--~z, ~), ~(~,z--~x, ~) 
from the following system of equations 

v 

@ (x, z, t) = F (x, z, t) + ,[ G ( ,~ ,  z -- , ~ x ,  ~) p~i (z  -- xo) d ,~;  

= - ~ , ,  (vt + % + wz)G@,  z - -  vx,  ~) = t ,  ~(v, z - -  vx ,  ~) = z .  

are found 

(l.1O) 

(1.Zl) 

For nonrelaxing gas flows (for 0 = const) the formulas (1.9) go over into the solutions 
obtained in [3, 5]. 

The relationships (1.9) remian valid even for an inhomogeneous distribution of the re- 
laxation parameters in the oncoming stream if the quantity p(x -- xo) therein is replaced by 
0(~, x, z, t). 

2. The quantity G(~, 8, T) in the solutions (1.9)-(1.11) plays the part of a certain 
Green's function. Let us analyze its structure. Differentiating the last of the equalities 
(i.ii) with respect to the variables x, z, t and evaluating the determinant A of the system 
of linear inhomogeneous equations 

(++ + o+ (!) 
+,,+ Oll+o.l--- , 
", - +-/\+,4 

we find 

i~, -- z~0 = A-* = @t + v= + vvz)-*, where 0 = z -- vz. 
Therefore, we will have on the characteristic manifold 

G(~, O, ~) = 0 ; o / ~  - -  ZoOZomO, Zo = ~(~, O, ~). ( 2 . 1 )  

The selection of the specific dependence x0 =~(~, 8, T) in the relatlonships (2.1), 
(1.9)-(1.11) is equivalent to solving the inverse problem of the flow around a wing (when 
the shape of the body surface is determined by the shape of the sho~k [6]). Indeed, let 
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�9 o = / ( ; ~ ,  ~), 

where ~ ----0/~, ~(v)__z/v_x, ~(~) --.z/~--x, I ~ =?(z, z)z (or 
= 0 O(~)=z--~z. We then obtain on the basis of (1.2) 

G(~, 0 (~), ~) ----0 [4]), y~ -~ V' 

~,(v) 

O(x, z, "r) = F(z,  z, "c) + S G(~,, x, "c)d~, (2 .2)  

z ~ x - 1  F ( z ,  z ,  ~) = r (x ,  ~) - : [~,(v)(x,  ~) + ] , 

Po [x - -  f (~, ,)1 G (~, z, ,)  = h (~, ,)  P, + / (~,, ,)l : ~: , 
~.(v) 

J G (~,, x, ~) d~,. v =  ~(v)(x,m)+x ' F = - - v - - T / z  
hot) 

Here Z(v)(z, T), r(z, z) a r e  a r b i t r a r y  f u n c t i o n s .  

In  c o n f o r m i t y  w i t h  t he  s o l u t i o n  ( 2 . 2 ) ,  the  shock l a y e r  t h i c k n e s s  f o r  x = c o n s t  depends 
only on the time, where (2.2) goes into the known solution for a stationary conical flow [6] 
f o r  ](~, ~) --. b~](i - -~) ,  ~ = b-Xz/z, b _---const, Po --const ,  r = o ,  

3. As is known, the flow around a wing of finite span within the framework of the 
theory of a thin shock layer contains three characteristic cases, usually examined separate- 
l y  [7-10] : 

/a) i~ o ,., (po, b) i~ ~ << (po, c) i~ ~ >> (po, 

where ~o is the Math cone angle in the compressed layer, and ~0 is the angle at the wing 
apex. 

Let us note that the case 'a' is generally the most general since the asymptotic repre- 
sentations of the stream parameters, the motion equations, and the boundary conditions fol- 
low from the corresponding expressions for the case 'a' for performing the passages to the 
limit: 

b) O/Oz ~ O, w - + 0 ;  c ) O/Oz ~ O, u -+  O. 

In  t h i s  c o n n e c t i o n ,  i t  i s  n a t u r a l  to  expec t  t h a t  the  g e n e r a l  a n a l y t i c a l  s o l u t i o n  (1 .9)  
obtained for the case 'a' will go continuously over into the corresponding solutions for 
the cases 'b' and 'c'. Let us show this. 

We go over to the variables X, ~, T, in the solution (i~9): 

N =~ =v(X, ~, z*), ~ ----z- (x- X)v(X, ~, zl), (3.1) 

~, = t - ( z  - X), 

z - o~ d $  = 
z - - X =  7 '  

v,1 + v x + vv~ 
d~ = i + (x -- Z) v~ d x ;  (3 .2)  

Here X, m are, respectively, the longitudinal and side coordinates of the streamline input 
into the shock layer [4]. 

Going over to the variables of integration (3.1) and (3.2), respectively, in the general 
solution, we obtain* 

y = F(x,  z, t) + .f Po*(x --Xo)J'(x, Xo, (~ ( 3 . 3 )  
Xb 

Z 

p = p,  - -  o[ ( D N v ) ]  (x,  Xo, r dzo; 
Xb . 

*Formulas analogous to (3.3) and (3.4) were 6btained for the stationary case by A. I. Golu- 
binskii and V. N. Golubkin. 

690 



(x, z, t) = F (x, z, t) + ~ p[* (x --xo)  ,r (x, z o, o)) dzo, 
~b 

J (X, X0, CO)= t + (2 - -  xo) N'~ (Zo, (o, ~)  

(3.4) 

o r  

(o 

[Z--Zo\ (3 5) 
y = m t) - 0o [7-)t x,  0)a 0, 

z 

p = p ,  - -  ~ (DNV) I (x, X, %) d%; 
z 

(o b 

r (x, z, t) = F (x, z, t) - -  O; I--W--)  f (x, X, zo)N-*dzo, ( 3 . 6 1  
z 

z-- z o I-1 

where 

z -- o = (x -- X)N(X, o, n), T~ = t -- (x -- ~), 

N(X, (o, n) = --q'~(X, z = co, ~,), N. = --r z =co, v0- 
(3.7) 

Here (DNv) = v t + vx + Nvz; v = Yt + y~q-Nyz, and Ps is the magnitude of the pressure on the 
shock front. The selection of the quantities Xb, Ob in the general case depends on the flow 
conditions over the wing leading edge Zo = zo(x) and on the thickness of the vortex sublayer 
[i0], where Pz = 0(1). For example, for a shock attached only at the wing apex [7], we will 
have Xb =0, ~b =0 , while for a shock attached along a smooth leading edge 

z - -  o) b = ( t /2 ) [?  - -  fi -4- ]/'(7 -4- ~)2 _ 4 i (x  - -  Xb) [1 t ] , :  

7 = z~(xb),~l ~ = F~(xb, O)b, T). 

The solution of the system of equations (3.5), (3.7) or (3.6), (3.7) permits finding 
the unknown shape of the shock Y =~,z,t) . These equations are more convenient for numer- 
ical integration of the direct problem than (i.i0) and (I.ii). 

4. The solution of the direct problem of flow around a wing for case 'b' follows from 
the system of equations (3.4) and (3.5) for a/a~-+0 and the limit relationships 'b'. In 
this case analytic expressions in the form 

v = F ,  + F, + p ~  (~ - -  Xo) - -  Po* (x - -  X), 

P = pb + (Xo - -  X) Pg' (x - -  ;~o) + P~" (x - -  X o ) -  P~-' (x - -  X), 

Pb = 2F.~ -4- 2Ft  -}- (x - -  Xo)(Fu -4- 2Fxt "4- F ~ )  -t- [ (x  - -  Xo) p~-I (x  - -  7+)Ix 

(4.1) 

are obtained successfully for the stream parameters. Here Pb is the pressure on the wing 
surface, Xo(Z) is the equation of the projection of the wing leading edge on the xOz plane, 
and the form of the function 0o(X -- Xo) depends on the form of the functions qm(X -- x.) 
satisfying the selected system of relaxing equations (1.3), where 

X 

y = F (x,  zo, t) -4- ,[ Po 1 (x ~) d~, z = z o = cons t ,  
~0 

(D (x, Zo, t) = F (z ,  zo, t) + ~ pg~ (x - -  ~) d~. 
Xo 

For p = const the formulas (4.1) agree with the result in [3]. 

Analogously to the above, the solution of the direct problem for case 'c' follows from 
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the  sys tem of  e q u a t i o n s  (3 .6)  as  O/Ox-~O and the  l i m i t  r e l a t i o n s  ' c ' :  

z 

Z 

p ---- p. --  ~ [D~ (co) y] I (m, z, ~,) N -~ (co, ~)  d(o, 
Z 

I , .  - ( .  _ 

i[ ; Pb = P .  --. D~ (r ~) -- DN (m) D~v dr -- D~v (co) 'dr 
Z t .  Z 

Here DN(zo), r are an abbreviated notation (in the number of arguments) for the fol- 
lowing quantities 

(4 .2)  

(4.3) 

8 
[%, ~1 (%)1 ~ ,  DN (Zo) = ~ -  + N (4 .4 )  

�9 ~ (zo) = t - (z  - -  :o) N - ~  [zo, n (Zo)], 
Z 0 

y = �9 (z,  t) - -  ~.1 p~ [~o - % (~o)] I (zo, z ,  t) dZo, 
[zo' h (Zo)] 

z 

zo i s  the  c o o r d i n a t e  o f  the  s t r e a m l i n e  i n p u t  to  the  shock.  

Let us note that the flow in the limit case under consideration is not dependent on 
x or X and, consequently, does not, in prlnciple, follow from the relations (3.4). However, 
because of the presence of a singularity in the solution (4.4) in the vortex sublayer, for- 
mulas (4.2)-(4.4) are valid only on the part of the shock layer where P, -----O(e) . To close 
the system (4.2)-(4.4), the inner solution in the vortex sublayer must be found analogously 
to [lO] and compared with the outer solution (4.2)-(4.4): 

N[Zo -'~ O, ~,(Zo)] -.~ W(y, -+ oo), y, = y / ] / s .  (4 .5 )  

The relationships (4.3) and (4.5) form a closed system of equations to find the shape 
of the shock y =~(x,z,t). 

In the stationary case and the equilibrium state of the vortex sublayer, the relation- 
ships (4.3)-(4.5) acquire a simpler form on the flat surface (F = 0) 

z 

Pb (z) = p, (z) -- [I -- N -t (z)] N:z (z) ~- N (z) 9o) ~- .I' N-x (~) z (m) p[..*,dm, (4.6) 
�9 g 0 

[N(z)+N-X(z)+~N-1(~)P[:Idm] = A ( I n N b ) z ' "  o 

Here Pb (Z) =----(Nb-}-l)9,1;9,!l , ----pJp!; ~8>~- *, n is a parameter Introduced" in [7] Q --~ 0, 
8 ' ~  0); p , :  ' 2 p! are, respectively, the equilibrium and frozen values of the density, A = cons! 
(the quantity A is determined from the boundary conditions on the wing edge [10]), x(~) = 
0) 
I N(z~176 and the subscript "b" refers to the plate surface. For 0 ffi cons! the relationships 
O 

(4.6) agree with those obtained earlier in [i0] 

0 

! ~ __ N -~. N (z) ~- N-* (z) = A (In Nb):, Pb (Z) = -- ~ (Nb ~- I), ps = -- i 

(4.7) 

*The cases !/IN ~, ]/~-< ~ require individual consideration but only ~I[>> Q, e-~ 0, o_~ 0 
corresponds to the case 'c'. 
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The solution of the system (4.7) reduces to the solution of one nonlinear ordinary 
differential equation with a singularity (of the "saddle" type) [i0]. Hence, obtaining 
the final expressions for the nonstationary relaxing stream parameters flowing perpendicu- 
larly to the wing set up turns out to be considerably more tedious than in case 'b' 

The author is grateful to V. Ya. Neiland for attention to the research. 
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AN EXACT SOLUTION FOR THE INTERACTION OF A SUPERSONIC WEDGE 

WITH THE BOUNDARY BETWEEN TWO GASES 

R. Ya. Tugazakov UDC 533.6.013.2 

It is fairly complicated to examine the interaction of a moving body with inhomogenei- 
ties (shock waves or contact discontinuities) in a gas flow. The problem is a nonlinear 
nonstationary one, in which there is a series of interactions Between the shock waves, con- 
tact discontinuities, and expansion waves. Therefore, only the linear formulation has been 
used in analytic solution in [1-3]. 

In the general case, the solution can be found only numerically [4-6]. Exact solutions 
can be found in certain cases. For example, in [7, 8] there are exact solutions for the 
flow of an incident shock wave around a moving wedge. 

Here we derive a class of exact solutions for the interaction of a wedge moving with a 
supersonic velocity in an ideal gas with the boundary between two gases. The medium is con- 
sidered nonviscous. 

i. We consider a wedge with a semivertex angle 8 (Fig. i) moving with a supersonic ve- 
locity qo in a medium where the pressure, density, and adiabatic parameter are correspondingly 
P0 = i, P0 = I, ?0 ; there is incident on the wedge at some angle 8 to the axis of motion a 
contact discontinuity DBF, where DB is part of the surface of the discontinuity that has 
not yet interacted, BF is the new surface of the discontinuity, ABC is the head shock wave, 
BE is the shock wave reflected from the surface of the contact discontinuity, and ~ is the 
angle formed by the head wave. We examined the flow picture on the upper surface of the 
wedge subject to the condition that the shock wave BE is reflected from the contact discon- 
tinuity. The case with a negative-pressure wave is not considered. 
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